Math with $\TeX$

Typesetting with $\TeX$. This is a list of $\TeX$ functions supported by Blot. It is sorted into logical groups.

Text
Blot will convert equations set in LaTeX. Wrap your LaTeX in two dollar signs () like this: $$f(x) = 2x^2 + 2/3$$  Accents  $a'$ a’ $\ddot{a}$ \ddot{a} $\overleftarrow{AB}$ \overleftarrow{AB} $\overrightarrow{AB}$ \overrightarrow{AB} $a''$ a’′ $\grave{a}$ \grave{a} $\underleftarrow{AB}$ \underleftarrow{AB} $\underrightarrow{AB}$ \underrightarrow{AB} $a^{\prime}$ a^{\prime} $\hat{\theta}$ \hat{\theta} $\overleftrightarrow{AB}$ \overleftrightarrow{AB} $\overbrace{AB}$ \overbrace{AB} $\acute{a}$ \acute{a} $\widehat{ac}$ \widehat{ac} $\underleftrightarrow{AB}$ \underleftrightarrow{AB} $\underbrace{AB}$ \underbrace{AB} $\bar{y}$ \bar{y} $\tilde{a}$ \tilde{a} $\overgroup{AB}$ \overgroup{AB} $\overlinesegment{AB}$ \overlinesegment{AB} $\breve{a}$ \breve{a} $\widetilde{ac}$ \widetilde{ac} $\undergroup{AB}$ \undergroup{AB} $\underlinesegment{AB}$ \underlinesegment{AB} $\check{a}$ \check{a} $\vec{F}$ \vec{F} $\overleftharpoon{ac}$ \overleftharpoon{ac} $\overrightharpoon{ac}$ \overrightharpoon{ac} $\dot{a}$ \dot{a} $\overline{AB}$ \overline{AB} $\Overrightarrow{AB}$ \Overrightarrow{AB} $\utilde{AB}$ \utilde{AB} $\underline{AB}$ \underline{AB} See also letters. Accent functions inside \text{…}  $\text{\'{a}}$ '{a} $\text{\~{a}}$ \~{a} $\text{\.{a}}$ \.{a} $\text{\H{a}}$ \H{a} $\text{\{a}}$ \{a} $\text{\={a}}$ \={a} $\text{"{a}}$ "{a} $\text{\v{a}}$ \v{a} $\text{\^{a}}$ \^{a} $\text{\u{a}}$ \u{a} $\text{\r{a}}$ \r{a} Delimiters  $(\,)$ ( ) $\lgroup\:\rgroup$ \lgroup\rgroup $\lceil\:\rceil$ \lceil\rceil $\uparrow$ \uparrow $[\:]$ [ ] $\lbrack\:\rbrack$ \lbrack\rbrack $\lﬂoor\:\rﬂoor$ \lﬂoor\rﬂoor $\downarrow$ \downarrow $\{\,\}$ \{ \} $\lbrace\:\rbrace$ \lbrace\rbrace $\ulcorner \urcorner$ \ulcorner\urcorner $\updownarrow$ \updownarrow $\langle\:\rangle$ \langle\rangle $\lt\:\gt$ \lt\gt $\llcorner \lrcorner$ \llcorner\lrcorner $\Uparrow$ \Uparrow $|$ | $\vert$ \vert $\backslash$ \backslash $\Downarrow$ \Downarrow $\|$ \| $\Vert$ \Vert $\lmoustache\:\rmoustache$ \lmoustache\rmoustache $\Updownarrow$ \Updownarrow $\lvert\;\rvert$ \lvert\rvert $\lVert\;\rVert$ \lVert\rVert \left. \right. Delimiter Sizing  $\left(\LARGE{AB}\right)$ \left( \LARGE{AB} \right) \left \big \bigl \bigr \middle \Big \Bigl \Bigr $( \big( \Big( \bigg( \Bigg($ ( \big( \Big( \bigg( \Bigg( \right \bigg \biggl \biggr \Bigg \Biggl \Biggr Environments  $\begin{matrix} a & b$\\ c & d \end{matrix} \begin{matrix} a & b \\ c & d \end{matrix} $\begin{array}{c|c} a & b$\\ c & d \end{array} \begin{array}{c|c} a & b \\ c & d \end{array} \begin{aligned} a&=b+c\\ d+e&=f \end{aligned} \begin{aligned} a&=b+c \\ d+e&=f \end{aligned} $\begin{pmatrix} a & b$\\ c & d \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} $\begin{bmatrix} a & b$\\ c & d \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{alignedat}{2}10&x+&3&y=2\\3&x+&13&y=4\end{alignedat} \begin{alignedat}{2} 10&x+ &3&y = 2 \\ 3&x+&13&y = 4 \end{alignedat} $\begin{vmatrix} a & b$\\ c & d \end{vmatrix} \begin{vmatrix} a & b \\ c & d \end{vmatrix} $\begin{Vmatrix} a & b$\\ c & d \end{Vmatrix} \begin{Vmatrix} a & b \\ c & d \end{Vmatrix} $\begin{gathered} a=b$\\ e=b+c \end{gathered} \begin{gathered} a=b \\ e=b+c \end{gathered} $\begin{Bmatrix} a & b$\\ c & d \end{Bmatrix} \begin{Bmatrix} a & b \\ c & d \end{Bmatrix} $x = \begin{cases} a &\text{if } b$\\ c &\text{if } d \end{cases} x = \begin{cases} a &\text{if } b \\ c &\text{if } d \end{cases} There is also support for {darray} and {dcases}. Acceptable line separators include: \\, \cr, and \\[distance]. Distance can be written with any of the units. The {array} environment does not yet support \hline. Letters  Γ \Gamma Δ \Delta Θ \Theta Λ \Lambda Ξ \Xi Π \Pi Σ \Sigma Υ \Upsilon Φ \Phi Ψ \Psi Ω \Omega α \alpha β \beta γ \gamma δ \delta ϵ \epsilon ζ \zeta η \eta θ \theta ι \iota κ \kappa λ \lambda μ \mu ν \nu ξ \xi o \omicron π \pi ρ \rho σ \sigma τ \tau υ \upsilon ϕ \phi χ \chi ψ \psi ω \omega ε \varepsilon ϰ \varkappa ϑ \vartheta ϖ \varpi ϱ \varrho ς \varsigma φ \varphi ϝ \digamma Direct Input: Γ Δ Θ Λ Ξ Π Σ Υ Φ Ψ Ωα β γ δ ϵ ζ η θ ι κ λ μ ν ξ o π ρ σ τ υ ϕ χ ψ ω ε ϑ ϖ ϱ ς φ Other Letters  $\imath$ \imath $\jmath$ \jmath ℵ \aleph ℶ \beth ℷ \gimel ℸ \daleth ð \eth Ⅎ \Finv ⅁ \Game ℓ \ell ℏ \hbar ℏ \hslash ℑ \Im ℜ \Re ℘ \wp ∂ \partial ∇ \nabla $\Bbbk$ \Bbbk  Direct Input: ℂ ℍ ℕ ℙ ℚ ℝ ℤ ∂ ð ∇ ℑ ℓ ℘ ℜ Ⅎ ℵ ℶ ℷ ℸ ⅁ ÀÁÂÃÄÅÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖÙÚÛÜÝÞàáâãäåçèéêëìíîïðñòóôöùúûüýþÿ Letters inside \text{} \text{…} will accept the functions: \ae, \AE, \oe, \OE, \o, \O, \ss, \i, \j. \text{…} also accepts Unicode characters from: Script Unicode Range Script Unicode Range Latin-10080 — 00FF Sinhala0D80 — 0DFF Cyrillic0400 — 04FF Thai0E00 — 0E7F Devanagari0900 — 097F Lao0E80 — 0EFF Bengali0980 — 09FF Tibetan0F00 — 0FFF Gurmukhi0A00 — 0A7F CJK symbols and punctuation3000 — 303F Gujarati0A80 — 0AFF Hiragana3040 — 309F Oriya0B00 — 0B7F Katakana30A0 — 30FF Tamil0B80 — 0BFF CJK ideograms4E00 — 9FAF Telugu0C00 — 0C7F HangulAC00 — D7AF Kannada0C80 — 0CFF Full width punctuationFF00 — FF60 Malayalam0D00 — 0D7F Annotation  $\cancel{5}$ \cancel{5} $\overbrace{a+b+c}^{\text{note}}$ \overbrace{a+b+c}^{\text{note}} $\bcancel{5}$ \bcancel{5} $\underbrace{a+b+c}_{\text{note}}$ \underbrace{a+b+c}_{\text{note}} $\xcancel{ABC}$ \xcancel{ABC} $\boxed{\pi = \frac c d}$ \boxed{\pi=\frac c d} $\sout{abc}$ \sout{abc} $\not =$ \not = Overlap  ${=}\mathllap{/\,}$ {=}\mathllap{/\,} $\left(x^{\smash{2}}\right)$ \left(x^{\smash{2}}\right) $\mathrlap{\,/}{=}$ \mathrlap{\,/}{=} $\sqrt{\smash[b]{y}}$ \sqrt{\smash[b]{y}} $\displaystyle \sum_{\mathclap{1\le i\le j\le n}} x_{ij}$ \sum_{\mathclap{1\le i\le j\le n}} x_{ij} There is also support for \llap, \rlap, and \clap, but they will take only text, not math, as arguments. Spacing Function Produces Function Produces \! ³∕₁₈ em space \kern{distance} space, width = distance \, ³∕₁₈ em space \mkern{distance} space, width = distance \thinspace ³∕₁₈ em space \skip{distance} space, width = distance \: ⁴∕₁₈ em space \mskip{distance} space, width = distance \medspace ⁴∕₁₈ em space \hspace{distance} space, width = distance \; ⁵∕₁₈ em space \hspace*{distance} space, width = distance \thickspace ⁵∕₁₈ em space \phantom{content} space the width and height of content \enspace ½ em space \hphantom{content} space the width of content \quad 1 em space \vphantom{content} a strut the height of content \qquad 2 em space ~ non-breaking space \space non-breaking space \space non-breaking space  Notes: {distance} will accept any of the units. \mkern and \mskip will not work in text mode and both will write a console warning for any unit except mu. See also environments Vertical Layout  $x_n$ x_n $\stackrel{!}{=}$ \stackrel{!}{=} $a \atop b$ a \atop b $e^x$ e^x $\overset{!}{=}$ \overset{!}{=} $a\raisebox{0.25em}{b}c$ a\raisebox{0.25em}{b}c $_u^o$ _u^o $\underset{!}{=}$ \underset{!}{=} See also relations and binary operators Logic and Set Theory  ∀ \forall ∁ \complement ∴ \therefore ¬ \neg or \lnot ∃ \exists ⊂ \subset ∵ \because ∅ \emptyset or \varnothing ∄ \nexists ⊃ \supset ↦ \mapsto ∈ \in ∣ \mid → \to ⟹ \implies ∉ \notin ∧ \land ← \gets ⟸ \impliedby ∋ \ni ∨ \lor ↔ \leftrightarrow ⟺ \iff $\notni$ \notni  Direct Input: ∀ ∴ ∁ ∵ ∃ ∣ ∈ ∉ ∋ ⊂ ⊃ ∧ ∨ ↦ → ← ↔ ℂ ℍ ℕ ℙ ℚ ℝ ℤ Big Operators  ∑ \sum ∏ \prod ⋁ \bigvee ⨂ \bigotimes ∫ \int ∐ \coprod ⋀ \bigwedge ⨁ \bigoplus ∬ \iint ∫ \intop ⋂ \bigcap ⨀ \bigodot ∭ \iiint ∫ \smallint ⋃ \bigcup ⨄ \biguplus ∮ \oint ⨆ \bigsqcup  Direct Input: ∫ ∬ ∭ ∮ ∏ ∐ ∑ ⋀ ⋁ ⋂ ⋃ ⨀ ⨁ ⨂ ⨄ ⨆ Binary Operators  + + ⋅ \cdot ⋗ \gtrdot $x \pmod a$ x \pmod a − - ⋅ \cdotp ⊺ \intercal $x \pod a$ x \pod a / / $\centerdot$ \centerdot ∧ \land ⊳ \rhd ∗ * ∘ \circ ⋋ \leftthreetimes ⋌ \rightthreetimes ⨿ \amalg ⊛ \circledast . \ldotp ⋊ \rtimes & \And ⊚ \circledcirc ∨ \lor ∖ \setminus ∗ \ast ⊝ \circleddash ⋖ \lessdot $\smallsetminus$ \smallsetminus ⊼ \barwedge ⋓ \Cup ⊲ \lhd ⊓ \sqcap ◯ \bigcirc ∪ \cup ⋉ \ltimes ⊔ \sqcup mod \bmod ⋎ \curlyvee mod \mod × \times ⊡ \boxdot ⋏ \curlywedge ∓ \mp ⊴ \unlhd ⊟ \boxminus ÷ \div ⊙ \odot ⊵ \unrhd ⊞ \boxplus ⋇ \divideontimes ⊖ \ominus ⊎ \uplus ⊠ \boxtimes ∔ \dotplus ⊕ \oplus ∨ \vee ∙ \bullet ⩞ \doublebarwedge ⊗ \otimes ⊻ \veebar ⋒ \Cap ⋒ \doublecap ⊘ \oslash ∧ \wedge ∩ \cap ⋓ \doublecup ± \pm ≀ \wr  Direct Input: + - / * ⋅ ± × ÷ ∓ ∔ ∧ ∨ ∩ ∪ ≀ ⊎ ⊓ ⊔ ⊕ ⊖ ⊗ ⊘ ⊙ ⊚ ⊛ ⊝ ⊞ ⊟ ⊠ ⊡ ⊺ ⊻ ⊼ ⋇ ⋉ ⋊ ⋋ ⋌ ⋎ ⋏ ⋒ ⋓ ⩞ Binomial Coefﬁcients  $\binom{n}{k}$ \binom{n}{k} $\dbinom{n}{k}$ \dbinom{n}{k} $\left\langle n \atop k \right\rangle$ \left\langlen \atop k\right\rangle ${n}\choose{k}$ {n}\choose{k} $\tbinom{n}{k}$ \tbinom{n}{k} Fractions  $\frac{a}{b}$ \frac{a}{b} $\dfrac{a}{b}$ \dfrac{a}{b} ${a}/{b}$ {a}/{b} ${a}\over{b}$ {a}\over{b} $\tfrac{a}{b}$ \tfrac{a}{b} Math Operators  $\operatorname{asin} x$ \operatorname{asin} x  arcsin \arcsin cotg \cotg ln \ln det \det arccos \arccos coth \coth log \log gcd \gcd arctan \arctan csc \csc sec \sec inf \inf arctg \arctg ctg \ctg sin \sin lim \lim arcctg \arcctg cth \cth sinh \sinh lim inf \liminf arg \arg deg \deg sh \sh lim sup \limsup ch \ch dim \dim tan \tan max \max cos \cos exp \exp tanh \tanh min \min cosec \cosec hom \hom tg \tg Pr \Pr cosh \cosh ker \ker th \th sup \sup cot \cot lg \lg Functions on the right side of this table can take \limits. Sqrt  $\sqrt{x}$ \sqrt{x} $\sqrt[3]{x}$ \sqrt[3]{x} Relations  $\stackrel{!}{=}$ \stackrel{!}{=} = = ⋟ \curlyeqsucc ⪆ \gtrapprox ⊥ \perp ⪸ \succapprox < < ⊣ \dashv ⋛ \gtreqless ⋔ \pitchfork ≽ \succcurlyeq > > $\dblcolon$ \dblcolon ⪌ \gtreqqless ≺ \prec ⪰ \succeq : : ≐ \doteq ≷ \gtrless ⪷ \precapprox ≿ \succsim ≈ \approx ≑ \Doteq ≳ \gtrsim ≼ \preccurlyeq ⋑ \Supset ≊ \approxeq ≑ \doteqdot ∈ \in ⪯ \preceq ⊃ \supset ≍ \asymp ≖ \eqcirc ⋈ \Join ≾ \precsim ⊇ \supseteq ∍ \backepsilon $\eqcolon$ \eqcolon ≤ \le ∝ \propto ⫆ \supseteqq ∽ \backsim $\Eqcolon$ \Eqcolon ≤ \leq ≓ \risingdotseq ≈ \thickapprox ⋍ \backsimeq $\eqqcolon$ \eqqcolon ≦ \leqq ∣ \shortmid ∼ \thicksim ≬ \between $\Eqqcolon$ \Eqqcolon ⩽ \leqslant ∥ \shortparallel ⊴ \trianglelefteq ⋈ \bowtie ≂ \eqsim ⪅ \lessapprox ∼ \sim ≜ \triangleq ≏ \bumpeq ⪖ \eqslantgtr ⋚ \lesseqgtr ≃ \simeq ⊵ \trianglerighteq ≎ \Bumpeq ⪕ \eqslantless ⪋ \lesseqqgtr $\smallfrown$ \smallfrown ∝ \varpropto ≗ \circeq ≡ \equiv ≶ \lessgtr $\smallsmile$ \smallsmile △ \vartriangle $\colonapprox$ \colonapprox ≒ \fallingdotseq ≲ \lesssim ⌣ \smile ⊲ \vartriangleleft $\Colonapprox$ \Colonapprox ⌢ \frown ≪ \ll ⊏ \sqsubset ⊳ \vartriangleright $\coloneq$ \coloneq ≥ \ge ⋘ \lll ⊑ \sqsubseteq $\vcentcolon$ \vcentcolon $\Coloneq$ \Coloneq ≥ \geq ⋘ \llless ⊐ \sqsupset ⊢ \vdash $\coloneqq$ \coloneqq ≧ \geqq < \lt ⊒ \sqsupseteq ⊨ \vDash $\Coloneqq$ \Coloneqq ⩾ \geqslant ∣ \mid ⋐ \Subset ⊩ \Vdash $\colonsim$ \colonsim ≫ \gg ⊨ \models ⊂ \subset ⊪ \Vvdash $\Colonsim$ \Colonsim ⋙ \ggg ⊸ \multimap ⊆ \subseteq  ≅ \cong ⋙ \gggtr ∋ \owns ⫅ \subseteqq  ⋞ \curlyeqprec > \gt ∥ \parallel ≻ \succ   Direct Input: = < > : ∈ ∋ ∝ ∼ ∽ ≂ ≃ ≅ ≈ ≊ ≍ ≎ ≏ ≐ ≑ ≒ ≓ ≖ ≗ ≜ ≡ ≤ ≥ ≦ ≧ ≫ ≬ ≳ ≷ ≺ ≻ ≼ ≽ ≾ ≿ ⊂ ⊃ ⊆ ⊇ ⊏ ⊐ ⊑ ⊒ ⊢ ⊣ ⊩ ⊪ ⊸ ⋈ ⋍ ⋐ ⋑ ⋔ ⋙ ⋛ ⋞ ⋟ ⌢ ⌣ ⩾ ⪆ ⪌ ⪕ ⪖ ⪯ ⪰ ⪷ ⪸ ⫅ ⫆ Negated Relations  $\not =$ \not = ⪊ \gnapprox  \ngeqslant ⊈ \nsubseteq ⪵ \precneqq ⪈ \gneq ≯ \ngtr  \nsubseteqq ⋨ \precnsim ≩ \gneqq ≰ \nleq ⊁ \nsucc ⊊ \subsetneq ⋧ \gnsim  \nleqq ⋡ \nsucceq ⫋ \subsetneqq  \gvertneqq  \nleqslant ⊉ \nsupseteq ⪺ \succnapprox ⪉ \lnapprox ≮ \nless  \nsupseteqq ⪶ \succneqq ⪇ \lneq ∤ \nmid ⋪ \ntriangleleft ⋩ \succnsim ≨ \lneqq ∉ \notin ⋬ \ntrianglelefteq ⊋ \supsetneq ⋦ \lnsim $\notni$ \notni ⋫ \ntriangleright ⫌ \supsetneqq  \lvertneqq ∦ \nparallel ⋭ \ntrianglerighteq  \varsubsetneq ≆ \ncong ⊀ \nprec ⊬ \nvdash  \varsubsetneqq ≠ \ne ⋠ \npreceq ⊭ \nvDash  \varsupsetneq ≠ \neq  \nshortmid ⊯ \nVDash  \varsupsetneqq ≱ \ngeq  \nshortparallel ⊮ \nVdash  \ngeqq ≁ \nsim ⪹ \precnapprox  Direct Input: ∉ ∤ ∦ ≁ ≆ ≠ ≨ ≩ ≮ ≯ ≰ ≱ ⊀ ⊁ ⊈ ⊉ ⊊ ⊋ ⊬ ⊭ ⊮ ⊯ ⋠ ⋡ ⋦ ⋧ ⋨ ⋩ ⋬ ⋭ ⪇ ⪈ ⪉ ⪊ ⪵ ⪶ ⪹ ⪺ ⫋ ⫌ Arrows  ↺ \circlearrowleft ⇐ \Leftarrow ↬ \looparrowright ⇉ \rightrightarrows ↻ \circlearrowright ↢ \leftarrowtail ↰ \Lsh ⇝ \rightsquigarrow ↶ \curvearrowleft ↽ \leftharpoondown ↦ \mapsto ⇛ \Rrightarrow ↷ \curvearrowright ↼ \leftharpoonup ↗ \nearrow ↱ \Rsh ⇠ \dashleftarrow ⇇ \leftleftarrows ↚ \nleftarrow ↘ \searrow ⇢ \dashrightarrow ↔ \leftrightarrow ⇍ \nLeftarrow ↙ \swarrow ↓ \downarrow ⇔ \Leftrightarrow ↮ \nleftrightarrow → \to ⇓ \Downarrow ⇆ \leftrightarrows ⇎ \nLeftrightarrow ↞ \twoheadleftarrow ⇊ \downdownarrows ⇋ \leftrightharpoons ↛ \nrightarrow ↠ \twoheadrightarrow ⇃ \downharpoonleft ↭ \leftrightsquigarrow ⇏ \nRightarrow ↑ \uparrow ⇂ \downharpoonright ⇚ \Lleftarrow ↖ \nwarrow ⇑ \Uparrow ← \gets ⟵ \longleftarrow ↾ \restriction ↕ \updownarrow ↩ \hookleftarrow ⟸ \Longleftarrow → \rightarrow ⇕ \Updownarrow ↪ \hookrightarrow ⟷ \longleftrightarrow ⇒ \Rightarrow ↿ \upharpoonleft ⟺ \iff ⟺ \Longleftrightarrow ↣ \rightarrowtail ↾ \upharpoonright ⟸ \impliedby ⟼ \longmapsto ⇁ \rightharpoondown ⇈ \upuparrows ⟹ \implies ⟶ \longrightarrow ⇀ \rightharpoonup ⇝ \leadsto ⟹ \Longrightarrow ⇄ \rightleftarrows ← \leftarrow ↫ \looparrowleft ⇌ \rightleftharpoons  Direct Input: ← ↑ → ↓ ↔ ↕ ↖ ↗ ↘ ↙ ↚ ↛ ↞ ↠ ↢ ↣ ↦ ↩ ↪ ↫ ↬ ↭ ↮ ↰ ↱ ↶ ↷ ↺ ↻ ↼ ↽ ↾ ↾ ↿ ⇀ ⇁ ⇂ ⇃ ⇄ ⇆ ⇇ ⇈ ⇉ ⇊ ⇋ ⇌ ⇍ ⇎ ⇏ ⇐ ⇑ ⇒ ⇓ ⇔ ⇕ ⇚ ⇛ ⇝ ⇠ ⇢ ⟵ ⟶ ⟷ ⟸ ⟹ ⟺ ⟼ Extensible Arrows  $\xrightarrow{over}$ \xrightarrow{over} $\xRightarrow{abc}$ \xRightarrow{abc} $\xrightharpoonup{abc}$ \xrightharpoonup{abc} $\xrightarrow[under]{over}$ \xrightarrow[under]{over} $\xmapsto{abc}$ \xmapsto{abc} $\xrightharpoondown{abc}$ \xrightharpoondown{abc} $\xleftarrow{abc}$ \xleftarrow{abc} $\xLeftarrow{abc}$ \xLeftarrow{abc} $\xleftharpoonup{abc}$ \xleftharpoonup{abc} $\xleftrightarrow{abc}$ \xleftrightarrow{abc} $\xLeftrightarrow{abc}$ \xLeftrightarrow{abc} $\xleftharpoondown{abc}$ \xleftharpoondown{abc} $\xhookleftarrow{abc}$ \xhookleftarrow{abc} $\xhookrightarrow{abc}$ \xhookrightarrow{abc} $\xrightleftharpoons{abc}$ \xrightleftharpoons{abc} $\xtwoheadrightarrow{abc}$ \xtwoheadrightarrow{abc} $\xlongequal{abc}$ \xlongequal{abc} $\xleftrightharpoons{abc}$ \xleftrightharpoons{abc} $\xtwoheadleftarrow{abc}$ \xtwoheadleftarrow{abc} $\xtofrom{abc}$ \xtofrom{abc} Extensible arrows all can take an optional argument in the same manner as \xrightarrow[under]{over}. Class Assignment  \mathbin \mathclose \mathinner \mathop \mathopen \mathord \mathpunct \mathrel Color The color function behaves like a switch.  $\color{blue} F=ma$ \color{blue} F=ma $\color{#fc625d} F=ma$ \color{#fc625d} F=ma Other color functions always expect the content to be a function argument.  $\textcolor{forestgreen}{F=ma}$ \textcolor{forestgreen}{F=ma} $\textcolor{#fc625d}{F=ma}$ \textcolor{#fc625d}{F=ma} $\colorbox{gold}{A}$ \colorbox{gold}{A} $\fcolorbox{black}{gold}{A}$ \fcolorbox{black}{gold}{A} For color deﬁnition, color functions will accept the standard HTML predeﬁned color names. They will also accept an RGB argument in CSS hexa­decimal style. Font  AB \mathrm{AB} AB \mathbf{AB} AB \mathit{AB} AB \mathsf{AB} AB \mathtt{AB} AB \textrm{AB} AB \textbf{AB} AB \textit{AB} AB \textsf{AB} AB \texttt{AB} AB \rm{AB} AB \bf{AB} AB \it{AB} AB \sf{AB} AB \tt{AB} AB \textnormal{AB} AB \bold{AB} AB \Bbb{AB} AB \mathcal{AB} AB \frak{AB} AB \text{AB} AB \boldsymbol{AB} AB \mathbb{AB} AB \mathscr{AB} AB \mathfrak{AB} AB \bm{AB} One can stack font family, font weight, and font shape by using the \textXX versions of the font functions. So \textsf{\textbf{H}} will produce $\textsf{\textbf{H}}$. The other versions so not stack, e.g., \mathsf{\mathbf{H}} will produce $\mathsf{\mathbf{H}}$. Size  $\Huge$AB \Huge AB $\normalsize$AB \normalsize AB $\huge$AB \huge AB $\small$AB \small AB \LARGE AB \LARGE AB $\footnotesize$AB \footnotesize AB $\Large$AB \Large AB $\scriptsize$AB \scriptsize AB $\large$AB \large AB $\tiny$AB \tiny AB Style  $\displaystyle\sum_{i=1}^n$ \displaystyle\sum_{i=1}^n $\textstyle\sum_{i=1}^n$ \textstyle\sum_{i=1}^n $\scriptstyle x$ \scriptstyle x The size of a ﬁrst sub/superscript $\scriptscriptstyle x$ \scriptscriptstyle x The size of subsequent sub/superscripts $\lim\limits_x$ \lim\limits_x $\lim\nolimits_x$ \lim\nolimits_x $\verb! x^2 !$ \verb!x^2! $\text{x}$ \text{x} \text{…} will accept nested …$ fragments and render them in math mode. \text{…} will render an extended range of characters. See Letters inside \text. Symbols and Punctuation  % comment □ \Box … \dots ✓ \checkmark % \% □ \square ⋯ \cdots † \dag # \# ■ \blacksquare ⋱ \ddots † \dagger & \& $\triangle$ \triangle … \ldots † \textdagger _ \_ $\triangledown$ \triangledown ⋮ \vdots ‡ \ddag _ \textunderscore $\triangleleft$ \triangleleft … \mathellipsis ‡ \ddagger – – $\triangleright$ \triangleright … \textellipsis ‡ \textdaggerdbl – \textendash $\bigtriangledown$ \bigtriangledown ♭ \ﬂat$ \$— –- $\bigtriangleup$ \bigtriangleup ♮ \natural$ \textdollar — \textemdash ▲ \blacktriangle ♯ \sharp £ \pounds ’ ` ▼ \blacktriangledown ® \circledR £ \textsterling ’ \textquoteleft ◀ \blacktriangleleft Ⓢ \circledS ¥ \yen ’ \textquoteright ▶ \blacktriangleright ♣ \clubsuit √ \surd “ \textquotedblleft ⋄ \diamond ♢ \diamondsuit ° \degree ″ ″ ◊ \Diamond ♡ \heartsuit ╲ \diagdown ” \textquotedblright ◊ \lozenge ♠ \spadesuit ╱ \diagup : \colon ⧫ \blacklozenge ∠ \angle ℧ \mho ‵ \backprime ⋆ \star ∡ \measuredangle ✠ \maltese ′ \prime ★ \bigstar ∢ \sphericalangle ∇ \nabla < \textless | \textbar ⊤ \top ∞ \infty > \textgreater ∥ \textbardbl ⊥ \bot { \textbraceleft } \textbraceright
 $\KaTeX$ \KaTeX $\LaTeX$ \LaTeX $\TeX$ \TeX
 Direct Input: £ ¥ ∇ ∞ · ∠ ∡ ∢ ♠ ♡ ♢ ♣ ♭ ♮ ♯ ✓

Units

Units are proportioned as they are in TeX instead of CSS.

Unit Value Unit Value
em CSS em bp $\frac 1{72}$ inch × F × G
ex CSS ex pc 12 $\TeX$pt
mu $\frac 1{18}$ CSS em dd $\frac{1238}{1157}$ $\TeX$pt
pt $\frac 1{72.27}$ inch × F × G    cc $\frac{14856}{1157}$ $\TeX$pt
mm 1 mm × F × G nd $\frac{685}{642}$ $\TeX$pt
cm 1 cm × F × G nc $\frac{1370}{107}$ $\TeX$pt
in 1 inch × F × G sp $\frac 1{65536}$ $\TeX$pt
 where: F = $\large \frac{\text{font size of surrounding$HTML text}}{10\text{ pt}} G = 1.21 by default, because $\TeX$ font-size is normally 1.21 × the surrounding font size. This value can be over-ridden by the CSS of an HTML page. For example, on this page, G = 1.0.

The effect of style and size:

Unit textstyle scriptscript huge
em or ex $\rule{1em}{1em}$ $\scriptscriptstyle\rule{1em}{1em}$ $\huge\rule{1em}{1em}$
mu $\rule{18mu}{18mu}$ $\scriptscriptstyle\rule{18mu}{18mu}$ $\huge\rule{18mu}{18mu}$
others $\rule{10pt}{10pt}$ $\scriptscriptstyle\rule{10pt}{10pt}$ $\huge\rule{10pt}{10pt}$