How to use Blot Formatting Tex

Math with TEX\TeX

Typesetting with TEX\TeX. This is a list of TEX\TeX functions supported by Blot. It is sorted into logical groups.

 Text 
Blot will convert equations set in LaTeX. Wrap your LaTeX in two dollar signs ($) like this:

$$ f(x) = 2x^2 + 2/3 $$

Accents

aa' a’ a¨\ddot{a} \ddot{a} AB\overleftarrow{AB} \overleftarrow{AB} AB\overrightarrow{AB} \overrightarrow{AB}
aa'' a’′ aˋ\grave{a} \grave{a} AB\underleftarrow{AB} \underleftarrow{AB} AB\underrightarrow{AB} \underrightarrow{AB}
aa^{\prime} a^{\prime} θ^\hat{\theta} \hat{\theta} AB\overleftrightarrow{AB} \overleftrightarrow{AB} AB\overbrace{AB} \overbrace{AB}
aˊ\acute{a} \acute{a} ac^\widehat{ac} \widehat{ac} AB\underleftrightarrow{AB} \underleftrightarrow{AB} AB\underbrace{AB} \underbrace{AB}
yˉ\bar{y} \bar{y} a~\tilde{a} \tilde{a} ABundefined\overgroup{AB} \overgroup{AB} ABundefined\overlinesegment{AB} \overlinesegment{AB}
a˘\breve{a} \breve{a} ac~\widetilde{ac} \widetilde{ac} ABundefined\undergroup{AB} \undergroup{AB} ABundefined\underlinesegment{AB} \underlinesegment{AB}
aˇ\check{a} \check{a} F\vec{F} \vec{F} ac\overleftharpoon{ac} \overleftharpoon{ac} ac\overrightharpoon{ac} \overrightharpoon{ac}
a˙\dot{a} \dot{a} AB\overline{AB} \overline{AB} AB\Overrightarrow{AB} \Overrightarrow{AB} AB~\utilde{AB} \utilde{AB}
AB\underline{AB} \underline{AB}
See also letters.

Accent functions inside \text{…}

aˊ\text{\'{a}} '{a} a˜\text{\~{a}} \~{a} a˙\text{\.{a}} \.{a} a˝\text{\H{a}} \H{a}
aˋ\text{\`{a}} \`{a} aˉ\text{\={a}} \={a} a¨\text{"{a}} "{a} aˇ\text{\v{a}} \v{a}
aˆ\text{\^{a}} \^{a} a˘\text{\u{a}} \u{a} a˚\text{\r{a}} \r{a}

Delimiters

()(\,) ( ) \lgroup\:\rgroup \lgroup
\rgroup
\lceil\:\rceil \lceil
\rceil
\uparrow \uparrow
[][\:] [ ] []\lbrack\:\rbrack \lbrack
\rbrack
\lfloor\:\rfloor \lfloor
\rfloor
\downarrow \downarrow
{}\{\,\} \{ \} {}\lbrace\:\rbrace \lbrace
\rbrace
\ulcorner \urcorner \ulcorner
\urcorner
\updownarrow \updownarrow
\langle\:\rangle \langle
\rangle
<>\lt\:\gt \lt
\gt
\llcorner \lrcorner \llcorner
\lrcorner
\Uparrow \Uparrow
| | \vert \vert \\backslash \backslash \Downarrow \Downarrow
\| \| \Vert \Vert \lmoustache\:\rmoustache \lmoustache
\rmoustache
\Updownarrow \Updownarrow
  \lvert\;\rvert \lvert
\rvert
  \lVert\;\rVert \lVert
\rVert
\left. \right.

Delimiter Sizing

(AB)\left(\LARGE{AB}\right) \left( \LARGE{AB} \right) \left \big \bigl \bigr
\middle \Big \Bigl \Bigr
(((((( \big( \Big( \bigg( \Bigg( ( \big( \Big( \bigg( \Bigg( \right \bigg \biggl \biggr
\Bigg \Biggl \Biggr

Environments

abcd\begin{matrix} a & b \\ c & d \end{matrix}
\begin{matrix}
   a & b \\
   c & d
\end{matrix}
abcd\begin{array}{c|c} a & b \\ c & d \end{array}
\begin{array}{c|c}
   a & b \\
   c & d
\end{array}
a=b+cd+e=f\begin{aligned} a&=b+c \\ d+e&=f \end{aligned}
\begin{aligned}
   a&=b+c \\
   d+e&=f
\end{aligned}
(abcd)\begin{pmatrix} a & b \\ c & d \end{pmatrix}
\begin{pmatrix}
   a & b \\
   c & d
\end{pmatrix}
[abcd]\begin{bmatrix} a & b \\ c & d \end{bmatrix}
\begin{bmatrix}
   a & b \\
   c & d
\end{bmatrix}
10x+3y=23x+13y=4\begin{alignedat}{2}10&x+&3&y=2\\3&x+&13&y=4\end{alignedat}
\begin{alignedat}{2}
   10&x+ &3&y = 2 \\
    3&x+&13&y = 4
\end{alignedat}
abcd\begin{vmatrix} a & b \\ c & d \end{vmatrix}
\begin{vmatrix}
   a & b \\
   c & d
\end{vmatrix}
abcd\begin{Vmatrix} a & b \\ c & d \end{Vmatrix}
\begin{Vmatrix}
   a & b \\
   c & d
\end{Vmatrix}
a=be=b+c\begin{gathered} a=b \\ e=b+c \end{gathered}
\begin{gathered}
   a=b \\ 
   e=b+c
\end{gathered}
{abcd}\begin{Bmatrix} a & b \\ c & d \end{Bmatrix}
\begin{Bmatrix}
   a & b \\
   c & d
\end{Bmatrix}
x={aif bcif dx = \begin{cases} a &\text{if } b \\ c &\text{if } d \end{cases}
x = \begin{cases}
   a &\text{if } b  \\
   c &\text{if } d
\end{cases}

There is also support for {darray} and {dcases}. Acceptable line separators include: \\, \cr, and \\[distance]. Distance can be written with any of the units. The {array} environment does not yet support \hline.

Letters

Γ \Gamma Δ \Delta Θ \Theta Λ \Lambda
Ξ \Xi Π \Pi Σ \Sigma Υ \Upsilon
Φ \Phi Ψ \Psi Ω \Omega
α \alpha β \beta γ \gamma δ \delta
ϵ \epsilon ζ \zeta η \eta θ \theta
ι \iota κ \kappa λ \lambda μ \mu
ν \nu ξ \xi o \omicron π \pi
ρ \rho σ \sigma τ \tau υ \upsilon
ϕ \phi χ \chi ψ \psi ω \omega
ε \varepsilon ϰ \varkappa ϑ \vartheta ϖ \varpi
ϱ \varrho ς \varsigma φ \varphi ϝ \digamma
Direct Input: Γ Δ Θ Λ Ξ Π Σ Υ Φ Ψ Ω
α β γ δ ϵ ζ η θ ι κ λ μ ν ξ o π ρ σ τ υ ϕ χ ψ ω ε ϑ ϖ ϱ ς φ

Other Letters

ı\imath \imath ȷ\jmath \jmath \aleph \beth \gimel
\daleth ð \eth \Finv \Game \ell
\hbar \hslash \Im \Re \wp
\partial \nabla k\Bbbk \Bbbk
Direct Input: ℂ ℍ ℕ ℙ ℚ ℝ ℤ ∂ ð ∇ ℑ ℓ ℘ ℜ Ⅎ ℵ ℶ ℷ ℸ ⅁
ÀÁÂÃÄÅÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖÙÚÛÜÝÞ
àáâãäåçèéêëìíîïðñòóôöùúûüýþÿ

Letters inside \text{}

\text{…} will accept the functions: \ae, \AE, \oe, \OE, \o, \O, \ss, \i, \j. \text{…} also accepts Unicode characters from:

Script Unicode Range Script Unicode Range
Latin-10080 — 00FF Sinhala0D80 — 0DFF
Cyrillic0400 — 04FF Thai0E00 — 0E7F
Devanagari0900 — 097F Lao0E80 — 0EFF
Bengali0980 — 09FF Tibetan0F00 — 0FFF
Gurmukhi0A00 — 0A7F CJK symbols and punctuation3000 — 303F
Gujarati0A80 — 0AFF Hiragana3040 — 309F
Oriya0B00 — 0B7F Katakana30A0 — 30FF
Tamil0B80 — 0BFF CJK ideograms4E00 — 9FAF
Telugu0C00 — 0C7F HangulAC00 — D7AF
Kannada0C80 — 0CFF Full width punctuationFF00 — FF60
Malayalam0D00 — 0D7F

Annotation

5\cancel{5} \cancel{5} a+b+cnote\overbrace{a+b+c}^{\text{note}} \overbrace{a+b+c}^{\text{note}}
5\bcancel{5} \bcancel{5} a+b+cnote\underbrace{a+b+c}_{\text{note}} \underbrace{a+b+c}_{\text{note}}
ABC\xcancel{ABC} \xcancel{ABC} π=cd\boxed{\pi = \frac c d} \boxed{\pi=\frac c d}
abc\sout{abc} \sout{abc}
̸=\not = \not =

Overlap

=/{=}\mathllap{/\,} {=}\mathllap{/\,} (x2)\left(x^{\smash{2}}\right) \left(x^{\smash{2}}\right)
/=\mathrlap{\,/}{=} \mathrlap{\,/}{=}    y\sqrt{\smash[b]{y}} \sqrt{\smash[b]{y}}
1ijnxij \displaystyle \sum_{\mathclap{1\le i\le j\le n}} x_{ij} \sum_{\mathclap{1\le i\le j\le n}} x_{ij}

There is also support for \llap, \rlap, and \clap, but they will take only text, not math, as arguments.

Spacing

Function Produces Function Produces
\! ³∕₁₈ em space \kern{distance} space, width = distance
\, ³∕₁₈ em space \mkern{distance} space, width = distance
\thinspace ³∕₁₈ em space \skip{distance} space, width = distance
\: ⁴∕₁₈ em space \mskip{distance} space, width = distance
\medspace ⁴∕₁₈ em space \hspace{distance} space, width = distance
\; ⁵∕₁₈ em space \hspace*{distance} space, width = distance
\thickspace ⁵∕₁₈ em space \phantom{content} space the width and height of content
\enspace ½ em space \hphantom{content} space the width of content
\quad 1 em space \vphantom{content} a strut the height of content
\qquad 2 em space
~ non-breaking space
\space non-breaking space
\space non-breaking space
Notes:{distance} will accept any of the units.
\mkern and \mskip will not work in text mode and both will write a console warning for any unit except mu.

See also environments

Vertical Layout

xnx_n x_n =!\stackrel{!}{=} \stackrel{!}{=} ab a \atop b a \atop b
exe^x e^x =!\overset{!}{=} \overset{!}{=} abca\raisebox{0.25em}{b}c  a\raisebox{0.25em}{b}c
uo_u^o _u^o  =!\underset{!}{=} \underset{!}{=} 
See also relations and binary operators

Logic and Set Theory

\forall \complement \therefore ¬ \neg or \lnot
\exists \subset \because \emptyset or \varnothing
\nexists \supset \mapsto
\in \mid \to \implies
\notin \land \gets \impliedby
\ni \lor \leftrightarrow \iff
̸\notni \notni
Direct Input: ∀ ∴ ∁ ∵ ∃ ∣ ∈ ∉ ∋ ⊂ ⊃ ∧ ∨ ↦ → ← ↔ ℂ ℍ ℕ ℙ ℚ ℝ ℤ

Big Operators

\sum \prod \bigvee \bigotimes
\int \coprod \bigwedge \bigoplus
\iint \intop \bigcap \bigodot
\iiint \smallint \bigcup \biguplus
\oint \bigsqcup
Direct Input: ∫ ∬ ∭ ∮ ∏ ∐ ∑ ⋀ ⋁ ⋂ ⋃ ⨀ ⨁ ⨂ ⨄ ⨆

Binary Operators

+ + \cdot \gtrdot x(moda)x \pmod a x \pmod a
- \cdotp \intercal x(a)x \pod a x \pod a
/ / \centerdot \centerdot \land \rhd
* \circ \leftthreetimes \rightthreetimes
⨿ \amalg \circledast . \ldotp \rtimes
& \And \circledcirc \lor \setminus
\ast \circleddash \lessdot \smallsetminus \smallsetminus
\barwedge \Cup \lhd \sqcap
\bigcirc \cup \ltimes \sqcup
mod \bmod \curlyvee mod \mod × \times
\boxdot \curlywedge \mp \unlhd
\boxminus ÷ \div \odot \unrhd
\boxplus \divideontimes \ominus \uplus
\boxtimes \dotplus \oplus \vee
\bullet \doublebarwedge \otimes \veebar
\Cap \doublecap \oslash \wedge
\cap \doublecup ± \pm \wr
Direct Input: + - / * ⋅ ± × ÷ ∓ ∔ ∧ ∨ ∩ ∪ ≀ ⊎ ⊓ ⊔ ⊕ ⊖ ⊗ ⊘ ⊙ ⊚ ⊛ ⊝ ⊞ ⊟ ⊠ ⊡ ⊺ ⊻ ⊼ ⋇ ⋉ ⋊ ⋋ ⋌ ⋎ ⋏ ⋒ ⋓ ⩞

Binomial Coefficients

(nk)\binom{n}{k} \binom{n}{k} (nk)\dbinom{n}{k} \dbinom{n}{k} nk\left\langle n \atop k \right\rangle \left\langle
n \atop k
\right\rangle
(nk){n}\choose{k} {n}\choose{k} (nk)\tbinom{n}{k} \tbinom{n}{k}

Fractions

ab\frac{a}{b} \frac{a}{b} ab\dfrac{a}{b} \dfrac{a}{b} a/b{a}/{b} {a}/{b}
ab{a}\over{b} {a}\over{b} ab\tfrac{a}{b} \tfrac{a}{b}

Math Operators

asinx\operatorname{asin} x \operatorname{asin} x
arcsin \arcsin cotg \cotg ln \ln det \det
arccos \arccos coth \coth log \log gcd \gcd
arctan \arctan csc \csc sec \sec inf \inf
arctg \arctg ctg \ctg sin \sin lim \lim
arcctg \arcctg cth \cth sinh \sinh lim inf \liminf
arg \arg deg \deg sh \sh lim sup \limsup
ch \ch dim \dim tan \tan max \max
cos \cos exp \exp tanh \tanh min \min
cosec \cosec hom \hom tg \tg Pr \Pr
cosh \cosh ker \ker th \th sup \sup
cot \cot lg \lg

Functions on the right side of this table can take \limits.

Sqrt

x\sqrt{x}  \sqrt{x}
x3\sqrt[3]{x}  \sqrt[3]{x}

Relations

=!\stackrel{!}{=} \stackrel{!}{=}
= = \curlyeqsucc \gtrapprox \perp \succapprox
< < \dashv \gtreqless \pitchfork \succcurlyeq
> > ::\dblcolon \dblcolon \gtreqqless \prec \succeq
: : \doteq \gtrless \precapprox \succsim
\approx \Doteq \gtrsim \preccurlyeq \Supset
\approxeq \doteqdot \in \preceq \supset
\asymp \eqcirc \Join \precsim \supseteq
\backepsilon :\eqcolon \eqcolon \le \propto \supseteqq
\backsim ::\Eqcolon \Eqcolon \leq \risingdotseq \thickapprox
\backsimeq =:\eqqcolon \eqqcolon \leqq \shortmid \thicksim
\between =::\Eqqcolon \Eqqcolon \leqslant \shortparallel \trianglelefteq
\bowtie \eqsim \lessapprox \sim \triangleq
\bumpeq \eqslantgtr \lesseqgtr \simeq \trianglerighteq
\Bumpeq \eqslantless \lesseqqgtr \smallfrown \smallfrown \varpropto
\circeq \equiv \lessgtr \smallsmile \smallsmile \vartriangle
:\colonapprox \colonapprox \fallingdotseq \lesssim \smile \vartriangleleft
::\Colonapprox \Colonapprox \frown \ll \sqsubset \vartriangleright
:\coloneq \coloneq \ge \lll \sqsubseteq :\vcentcolon \vcentcolon
::\Coloneq \Coloneq \geq \llless \sqsupset \vdash
:=\coloneqq \coloneqq \geqq < \lt \sqsupseteq \vDash
::=\Coloneqq \Coloneqq \geqslant \mid \Subset \Vdash
:\colonsim \colonsim \gg \models \subset \Vvdash
::\Colonsim \Colonsim \ggg \multimap \subseteq
\cong \gggtr \owns \subseteqq
\curlyeqprec > \gt \parallel \succ
Direct Input: = < > : ∈ ∋ ∝ ∼ ∽ ≂ ≃ ≅ ≈ ≊ ≍ ≎ ≏ ≐ ≑ ≒ ≓ ≖ ≗ ≜ ≡ ≤ ≥ ≦ ≧ ≫ ≬ ≳ ≷ ≺ ≻ ≼ ≽ ≾ ≿ ⊂ ⊃ ⊆ ⊇ ⊏ ⊐ ⊑ ⊒ ⊢ ⊣ ⊩ ⊪ ⊸ ⋈ ⋍ ⋐ ⋑ ⋔ ⋙ ⋛ ⋞ ⋟ ⌢ ⌣ ⩾ ⪆ ⪌ ⪕ ⪖ ⪯ ⪰ ⪷ ⪸ ⫅ ⫆

Negated Relations

̸=\not = \not =
\gnapprox \ngeqslant \nsubseteq \precneqq
\gneq \ngtr \nsubseteqq \precnsim
\gneqq \nleq \nsucc \subsetneq
\gnsim \nleqq \nsucceq \subsetneqq
\gvertneqq \nleqslant \nsupseteq \succnapprox
\lnapprox \nless \nsupseteqq \succneqq
\lneq \nmid \ntriangleleft \succnsim
\lneqq \notin \ntrianglelefteq \supsetneq
\lnsim ̸\notni \notni \ntriangleright \supsetneqq
\lvertneqq \nparallel \ntrianglerighteq \varsubsetneq
\ncong \nprec \nvdash \varsubsetneqq
\ne \npreceq \nvDash \varsupsetneq
\neq \nshortmid \nVDash \varsupsetneqq
\ngeq \nshortparallel \nVdash
\ngeqq \nsim \precnapprox
Direct Input: ∉ ∤ ∦ ≁ ≆ ≠ ≨ ≩ ≮ ≯ ≰ ≱ ⊀ ⊁ ⊈ ⊉ ⊊ ⊋ ⊬ ⊭ ⊮ ⊯ ⋠ ⋡ ⋦ ⋧ ⋨ ⋩ ⋬ ⋭ ⪇ ⪈ ⪉ ⪊ ⪵ ⪶ ⪹ ⪺ ⫋ ⫌

Arrows

\circlearrowleft \Leftarrow \looparrowright \rightrightarrows
\circlearrowright \leftarrowtail \Lsh \rightsquigarrow
\curvearrowleft \leftharpoondown \mapsto \Rrightarrow
\curvearrowright \leftharpoonup \nearrow \Rsh
\dashleftarrow \leftleftarrows \nleftarrow \searrow
\dashrightarrow \leftrightarrow \nLeftarrow \swarrow
\downarrow \Leftrightarrow \nleftrightarrow \to
\Downarrow \leftrightarrows \nLeftrightarrow \twoheadleftarrow
\downdownarrows \leftrightharpoons \nrightarrow \twoheadrightarrow
\downharpoonleft \leftrightsquigarrow \nRightarrow \uparrow
\downharpoonright \Lleftarrow \nwarrow \Uparrow
\gets \longleftarrow \restriction \updownarrow
\hookleftarrow \Longleftarrow \rightarrow \Updownarrow
\hookrightarrow \longleftrightarrow \Rightarrow \upharpoonleft
\iff \Longleftrightarrow \rightarrowtail \upharpoonright
\impliedby \longmapsto \rightharpoondown \upuparrows
\implies \longrightarrow \rightharpoonup
\leadsto \Longrightarrow \rightleftarrows
\leftarrow \looparrowleft \rightleftharpoons
Direct Input: ← ↑ → ↓ ↔ ↕ ↖ ↗ ↘ ↙ ↚ ↛ ↞ ↠ ↢ ↣ ↦ ↩ ↪ ↫ ↬ ↭ ↮ ↰ ↱ ↶ ↷ ↺ ↻ ↼ ↽ ↾ ↾ ↿ ⇀ ⇁ ⇂ ⇃ ⇄ ⇆ ⇇ ⇈ ⇉ ⇊ ⇋ ⇌ ⇍ ⇎ ⇏ ⇐ ⇑ ⇒ ⇓ ⇔ ⇕ ⇚ ⇛ ⇝ ⇠ ⇢ ⟵ ⟶ ⟷ ⟸ ⟹ ⟺ ⟼

Extensible Arrows

over\xrightarrow{over} \xrightarrow{over} abc\xRightarrow{abc} \xRightarrow{abc} abc\xrightharpoonup{abc} \xrightharpoonup{abc}
underover\xrightarrow[under]{over} \xrightarrow[under]{over} abc\xmapsto{abc} \xmapsto{abc} abc\xrightharpoondown{abc} \xrightharpoondown{abc}
abc\xleftarrow{abc} \xleftarrow{abc} abc\xLeftarrow{abc} \xLeftarrow{abc} abc\xleftharpoonup{abc} \xleftharpoonup{abc}
abc\xleftrightarrow{abc} \xleftrightarrow{abc} abc\xLeftrightarrow{abc} \xLeftrightarrow{abc} abc\xleftharpoondown{abc} \xleftharpoondown{abc}
abc\xhookleftarrow{abc} \xhookleftarrow{abc} abc\xhookrightarrow{abc} \xhookrightarrow{abc} abc\xrightleftharpoons{abc} \xrightleftharpoons{abc}
abc\xtwoheadrightarrow{abc} \xtwoheadrightarrow{abc} =abc\xlongequal{abc} \xlongequal{abc} abc\xleftrightharpoons{abc} \xleftrightharpoons{abc}
abc\xtwoheadleftarrow{abc} \xtwoheadleftarrow{abc} abc\xtofrom{abc} \xtofrom{abc}

Extensible arrows all can take an optional argument in the same manner as \xrightarrow[under]{over}.

Class Assignment

\mathbin \mathclose \mathinner \mathop
\mathopen \mathord \mathpunct \mathrel

Color

The color function behaves like a switch.

F=ma\color{blue} F=ma \color{blue} F=ma
F=ma\color{#fc625d} F=ma \color{#fc625d} F=ma

Other color functions always expect the content to be a function argument.

F=ma\textcolor{forestgreen}{F=ma} \textcolor{forestgreen}{F=ma}
F=ma\textcolor{#fc625d}{F=ma} \textcolor{#fc625d}{F=ma}
A\colorbox{gold}{A} \colorbox{gold}{A}
A\fcolorbox{black}{gold}{A} \fcolorbox{black}{gold}{A}

For color definition, color functions will accept the standard HTML predefined color names. They will also accept an RGB argument in CSS hexa­decimal style.

Font

AB \mathrm{AB} AB \mathbf{AB} AB \mathit{AB} AB \mathsf{AB} AB \mathtt{AB}
AB \textrm{AB} AB \textbf{AB} AB \textit{AB} AB \textsf{AB} AB \texttt{AB}
AB \rm{AB} AB \bf{AB} AB \it{AB} AB \sf{AB} AB \tt{AB}
AB \textnormal{AB} AB \bold{AB} AB \Bbb{AB} AB \mathcal{AB} AB \frak{AB}
AB \text{AB} AB \boldsymbol{AB} AB \mathbb{AB} AB \mathscr{AB} AB \mathfrak{AB}
AB \bm{AB}

One can stack font family, font weight, and font shape by using the \textXX versions of the font functions. So \textsf{\textbf{H}} will produce H\textsf{\textbf{H}}. The other versions so not stack, e.g., \mathsf{\mathbf{H}} will produce H\mathsf{\mathbf{H}}.

Size

AB\Huge AB \Huge AB AB\normalsize AB \normalsize AB
AB\huge AB \huge AB AB\small AB \small AB
AB\LARGE AB \LARGE AB AB\footnotesize AB \footnotesize AB
AB\Large AB \Large AB AB\scriptsize AB \scriptsize AB
AB\large AB \large AB AB\tiny AB \tiny AB

Style

i=1n\displaystyle\sum_{i=1}^n \displaystyle\sum_{i=1}^n
i=1n\textstyle\sum_{i=1}^n \textstyle\sum_{i=1}^n
x\scriptstyle x \scriptstyle x The size of a first sub/superscript
x\scriptscriptstyle x \scriptscriptstyle x The size of subsequent sub/superscripts
limx\lim\limits_x \lim\limits_x
limx\lim\nolimits_x \lim\nolimits_x
 x^2 \verb! x^2 ! \verb!x^2!
x\text{x} \text{x}

\text{…} will accept nested $…$ fragments and render them in math mode.

\text{…} will render an extended range of characters. See Letters inside \text.

Symbols and Punctuation

% comment \Box \dots \checkmark
% \% \square \cdots \dag
# \# \blacksquare \ddots \dagger
& \& \triangle \triangle \ldots \textdagger
_ \_ \triangledown \triangledown \vdots \ddag
_ \textunderscore \triangleleft \triangleleft \mathellipsis \ddagger
\triangleright \triangleright \textellipsis \textdaggerdbl
\textendash \bigtriangledown \bigtriangledown \flat $ \$
–- \bigtriangleup \bigtriangleup \natural $ \textdollar
\textemdash \blacktriangle \sharp £ \pounds
` \blacktriangledown ® \circledR £ \textsterling
\textquoteleft \blacktriangleleft \circledS ¥ \yen
\textquoteright \blacktriangleright \clubsuit \surd
\textquotedblleft \diamond \diamondsuit ° \degree
\Diamond \heartsuit \diagdown
\textquotedblright \lozenge \spadesuit \diagup
: \colon \blacklozenge \angle \mho
\backprime \star \measuredangle \maltese
\prime \bigstar \sphericalangle \nabla
< \textless | \textbar \top \infty
> \textgreater \textbardbl \bot
{ \textbraceleft } \textbraceright
KATEX\KaTeX \KaTeX LATEX\LaTeX \LaTeX TEX\TeX \TeX
Direct Input: £ ¥ ∇ ∞ · ∠ ∡ ∢ ♠ ♡ ♢ ♣ ♭ ♮ ♯ ✓

Units

Units are proportioned as they are in TeX instead of CSS.

Unit Value Unit Value
em CSS em bp 172\frac 1{72} inch × F × G
ex CSS ex pc 12 TEX\TeXpt
mu 118\frac 1{18} CSS em dd 12381157\frac{1238}{1157} TEX\TeXpt
pt 172.27\frac 1{72.27} inch × F × G    cc 148561157\frac{14856}{1157} TEX\TeXpt
mm 1 mm × F × G nd 685642\frac{685}{642} TEX\TeXpt
cm 1 cm × F × G nc 1370107\frac{1370}{107} TEX\TeXpt
in 1 inch × F × G sp 165536\frac 1{65536} TEX\TeXpt
where: F = font size of surrounding HTML text10 pt\large \frac{\text{font size of surrounding HTML text}}{10\text{ pt}}
G = 1.21 by default, because TEX\TeX font-size is normally 1.21 × the surrounding font size. This value can be over-ridden by the CSS of an HTML page. For example, on this page, G = 1.0.

The effect of style and size:

Unit textstyle scriptscript huge
em or ex \rule{1em}{1em} \scriptscriptstyle\rule{1em}{1em} \huge\rule{1em}{1em}
mu \rule{18mu}{18mu} \scriptscriptstyle\rule{18mu}{18mu} \huge\rule{18mu}{18mu}
others \rule{10pt}{10pt} \scriptscriptstyle\rule{10pt}{10pt} \huge\rule{10pt}{10pt}